|
| 1: |
|
app(app(neq,0),0) |
→ false |
| 2: |
|
app(app(neq,0),app(s,y)) |
→ true |
| 3: |
|
app(app(neq,app(s,x)),0) |
→ true |
| 4: |
|
app(app(neq,app(s,x)),app(s,y)) |
→ app(app(neq,x),y) |
| 5: |
|
app(app(filter,f),nil) |
→ nil |
| 6: |
|
app(app(filter,f),app(app(cons,y),ys)) |
→ app(app(app(filtersub,app(f,y)),f),app(app(cons,y),ys)) |
| 7: |
|
app(app(app(filtersub,true),f),app(app(cons,y),ys)) |
→ app(app(cons,y),app(app(filter,f),ys)) |
| 8: |
|
app(app(app(filtersub,false),f),app(app(cons,y),ys)) |
→ app(app(filter,f),ys) |
| 9: |
|
nonzero |
→ app(filter,app(neq,0)) |
|
There are 13 dependency pairs:
|
| 10: |
|
APP(app(neq,app(s,x)),app(s,y)) |
→ APP(app(neq,x),y) |
| 11: |
|
APP(app(neq,app(s,x)),app(s,y)) |
→ APP(neq,x) |
| 12: |
|
APP(app(filter,f),app(app(cons,y),ys)) |
→ APP(app(app(filtersub,app(f,y)),f),app(app(cons,y),ys)) |
| 13: |
|
APP(app(filter,f),app(app(cons,y),ys)) |
→ APP(app(filtersub,app(f,y)),f) |
| 14: |
|
APP(app(filter,f),app(app(cons,y),ys)) |
→ APP(filtersub,app(f,y)) |
| 15: |
|
APP(app(filter,f),app(app(cons,y),ys)) |
→ APP(f,y) |
| 16: |
|
APP(app(app(filtersub,true),f),app(app(cons,y),ys)) |
→ APP(app(cons,y),app(app(filter,f),ys)) |
| 17: |
|
APP(app(app(filtersub,true),f),app(app(cons,y),ys)) |
→ APP(app(filter,f),ys) |
| 18: |
|
APP(app(app(filtersub,true),f),app(app(cons,y),ys)) |
→ APP(filter,f) |
| 19: |
|
APP(app(app(filtersub,false),f),app(app(cons,y),ys)) |
→ APP(app(filter,f),ys) |
| 20: |
|
APP(app(app(filtersub,false),f),app(app(cons,y),ys)) |
→ APP(filter,f) |
| 21: |
|
NONZERO |
→ APP(filter,app(neq,0)) |
| 22: |
|
NONZERO |
→ APP(neq,0) |
|
The approximated dependency graph contains one SCC:
{10,12,13,15,17,19}.